Recipe & Product Review: Fruit Vinegar-Flavored Water, the Closest Drink I’ve Found to Fruit Juice

Get new posts by email or rss feed


Left to right: Apple cider vinegar, date vinegar, and raspberry vinegar.

Before I got diabetes, I used to love fruit juice. It’s one of the things I miss most and there really are no good zero-carb substitutes. I’ve found a few kombuchas that I like, but all have at least a few carbs per cup. Not too bad, but not really worth taking medication for. 

Recently, though, I found that I could add apple cider vinegar to water to get a really great sour apple juice flavor. I tried searching for other fruit vinegars, but everything I found had significant amounts of sugar, until u/ChezLuc, on Reddit, pointed me to Supreme Vinegar. They have a huge range of different kinds of vinegars, including 12 fruit vinegars. I e-mailed the company and all have “almost no residual sugar,” except for pineapple (1 g/15 mL). I tested my blood sugar after drinking ~50 mL of the raspberry and didn’t see any rise, so I’m pretty sure they’re telling the truth.

Here’s my thoughts on the raspberry and date flavors (rest were out of stock) and a couple recipe ideas:

  • Raspberry: I really like this flavor. Basically tastes like berries with the sugar removed, though more like blackberry than raspberry. The flavor is very strong (about twice as strong as apple cider vinegar for the same ratio). Surprisingly, it wasn’t very acidic compared with the apple cider vinegar I get from Costco, even though both claim to be diluted to 5% acidity. Maybe there’s something else in the apple that makes it more sour? 
  • Date: This tasted exactly like dates with the sugar removed and was also not very acidic. Personally, I don’t love dates, so this wasn’t my favorite. If you do like dates, though, this would probably be pretty good. 
  • Recipes:
    • Basic: 
      • 20:1 volume ratio of water to vinegar
      • Mix and serve
    • Sweetened: 
      • 20:1 volume ratio of water to vinegar
      • Sweetener to taste. I use 2 drops liquid sucralose or 10g allulose

Overall, I’m really enjoying these and have been drinking a ton of the raspberry vinegar-water over the last week. I’m definitely going to order the rest of Supreme’s flavors once they’re back in stock. I’m especially looking forward to the peach.


– QD


Get new posts by email or rss feed

Measuring the Effect of Low-carb Ingredients and Macronutrients on Blood Glucose: Final Report

Get new posts by email or rss feed


This self-experiment was done as part of the Keating Memorial Self-Research Project. If you’d like to read about the other other experiments, you can find them here

Since I started self-experimenting to better manage my diabetes, one of the things I was most interested in was the effect of different foods on blood sugar. I follow a low-carb/keto diet and I was particularly interested in confirming if low-carb flour and sugar replacements (e.g. oat-fiber, inulin, allulose, etc.) really have as little impact as claimed. 

When I first tried this, I added ingredients to my normal meals measured the change in my normal BG trends. This proved too noisy and I couldn’t get a clean measure of the effect of even pure glucose in a reasonable number of measurements (designresults).

For these experiments, I isolated the effect of the ingredient being tested by fasting for 17 h before eating/drinking. This worked really well and I was able to get reliable measurements and some (hopefully) interesting insights.

I hope some people find this interesting. If you have any questions, comments, or suggestions for future experiments, I’d love to know. 

Lastly, if you’re interested in joining in any future experiments, let me know in the comments or send a via the contact form or to quantifieddiabetes_at_gmail.com. 


Summary


Approach

Results for ingredients without links are in this post.


Key results

  • The main macronutrients, carbohydrates, protein, and fat have the expected impact. Notably:
    • Contrary to some claims I’ve read, fat had virtually zero impact on my blood sugar.
    • Starch and glucose had nearly the same impact, though slightly delayed in time. This suggests that for purposes of carbohydrate counting, I can treat all digestible carbohydrates the same.
  • Insoluble or “indigestible” fiber had a wide range of impact, from near zero for oat fiber, ~10% of glucose for inulin, to 76% of glucose for resistant wheat starch.  
    • This is extremely disconcerting, as both oat fiber (iAUC 0.4% of glucose) and resistant wheat starch (iAUC 75% of glucose) are listed as insoluble fiber on nutrition labels, but have radically different impact on blood sugar. Given the lack of clarity and quantification of ingredient lists, this makes it nearly impossible to predict the blood glucose impact of a food without eating it and testing.
  • My two preferred non-nutritive sweeteners, allulose and erythritol had negligible impact on my blood glucose.
  • Adding oat fiber to glucose had a negligible impact on blood glucose, though the time to peak was increased by 30 min. Further testing with different types of fiber and other macronutrients would be required to get a better handle on this effect, but the initial results suggest that while fiber might have an impact on rate of glucose absorption, it’s not signifiant enough to change the blood glucose impact for insulin-dependent diabetics (might be very different for someone who makes more endogenous insulin).

Details

Purpose

To quantify the effect of ingestion of food ingredients and ingredient combinations on my blood sugar.


Background on Ingredients

Glucose. The most common type of simple sugar used in living organisms. It is used as an energy source through aerobic respirationanaerobic respiration (in bacteria), or fermentation.

Corn starch. Starch derived from the endosperm of corn kernels. Chemically, it’s a polymer of glucose and is readily hydrolyzed by amylase enzymes in the saliva or acid in the sy]tomach.

Whey Protein. A complete protein extracted from milk whey. It’s the most popular protein supplement due to its ease of digestion, rapid absorption, and appreciable content of all 9 essential amino acids.

Olive Oil. A cooking oil that’s high in unsaturated fats, primarily oleic, linoleic, and palmitic acid. It’s used extensively in cooking.

Oat Fiber. An insoluble fiber made from grinding the shells of oat kernels. It’s purported to be completely indigestible, making it a great partial replacement for flour in low-carb baking when you don’t want the increased calories of almond or coconut flour. I personally have found it to be useful for making protein muffins and chocolate chip & coconut cookies.  

Resistant starch. A starch that, purportedly, is not digested in the small intestine and therefore doesn’t increase blood sugar when consumed. There are four different classes of resistant starches, RS1-4, which differ based on how they’re formed and the method by which they resist digestion. Resistant wheat starch is RS4, meaning it was chemically modified to resist digestion in the small intestine.

Inulin. A soluble fiber found in many plants. Inulin is used in many processed foods to modify texture, increase bulk, and/or replace fat and sugar. It is indigestible by human enzymes and so passes through much of the digestive system intact before being (partially) metabolized by bacteria in the colon. 

Allulose. A sugar substitute with very similar physical properties to table sugar. This makes it particularly useful in low carb baking or any recipe where sugar provides texture as well as taste. I personally have found it particularly useful for making ice creamcookies, and syrup.

Erythritol. A sugar alcohol produced by glucose fermentation and used as a non-nutritive sweetener. It’s 60-70% as sweet as sucrose and not metabolized, making it almost zero calories. It’s dissolution in water is strongly endothermic, resulting in a “mouth cooling” effect that some people find unpleasant. 


Design/Methods

Procedure. From 7 pm the day before through 4:30p the day of experiment, no food or calorie-containing drinks were consumed and no exercise was performed. Non-calorie-containing drinks were consumed as desired (water, caffeine-free tea, and decaffeinated coffee). At ~12 pm, the substance to be tested was dissolved or suspended in 475 mL of water and ingested as rapidly as comfortable. BGM measurements were then taken approximately every 15 min. for 2 h or until blood glucose had returned to baseline, whichever was longer. A final BGM measurement was taken 4.5 h after ingestion.
Measurements. Blood glucose was measured using a FreeStyle Freedom Lite glucose meter with FreeStyle lancets & test strips. No special precautions were taken to clean the lancing site before measurement. To take a sample, the lancing devices was used to pierce the skin at an ~45° angle from the finger. Blood was then squeezed out by running the thumb and pointer finger of the opposite hand from the first knuckle to the lancing site of the finger. Blood was then wicked into a test strip that had been inserted into the meter and the glucose reading was recorded.

Data Processing & Visualization. iAUC was calculated using the trapezoid method (see data spreadsheet for details). Data was visualized using Tableau.

Medication. I took my normal morning and evening medication, but did not dose for the experimental food ingested.


Data

Link


Results & Discussion

Establishing baseline

Additional details here: baseline. 

To determine the best time of day to measure the effect of food ingredients on my blood sugar, I monitored my blood sugar on three separate days while fasting. Based on the results, for all experiments in this study, I started fasting 7p the night before and started the measurement at 12p.


Macronutrients

Additional details here: Glucose, Whey protein & olive oil

Glucose was used as the baseline for comparison for all other ingredients. It raises my blood sugar by 6.7 mg/dL/gglucose, with the peak occurring from 45-75 min. after ingestion. Results were extremely linear with amount consumed, with a slightly better fit when using incremental area under the curve (iAUC) vs. the peak increase (R2 = 0.988 vs. 0.983).

Corn starch had virtually the same effect as glucose, with an increase of 141% (by iAUC), but with a slower rise (110 vs. 76 min. for higher amounts consumed). This resulted in a slightly lower peak, 4.1 mg/dL/g(cornstarch) or 76% that of glucose. 

Whey protein isolate increases my blood sugar by ~20% that of glucose (by iAUC), but with a slower rise. This result sin a lower peak, 0.68 mg/dL/g(whey) or 10% that of glucose, but a long tail of increased blood sugar, ~0.4 mg/dL/g(whey) @ 4.5 h.

Olive oil had a negligible effect on my blood sugar, ~0.1 mg/dL/g(olive oil) for ~350 kcal of oil, or 1.5% that of glucose.

This is mostly consistent with the medical literature. The two most interesting observations for me were:

  • Fat had virtually zero impact on my blood sugar. I’ve read a lot of posts and comments by people who dose a small amount of insulin based on the fat content of a meal. The claim is that it does increase their blood glucose, though much less than carbohydrates or proteins. My (limited) measurements do not show this.
    • If anyone reading this does see blood glucose rise with fat intake and is interested in doing a joint experiment to measure it, please let me know in the comments or send a PM via the contact form or to quantifieddiabetes_at_gmail.com. 
  • Cornstarch had virtually the same impact on as glucose, just slightly delayed in time. Given the difference in their glycemic index (100 vs. 70), I would have expected a larger effect. That said, this suggests that for purposes of carbohydrate counting, I can treat all digestible carbohydrates the same.

Fiber

Additional details here: Oat fiber, resistant wheat starch

Fiber was the most interesting and disturbing category. I looked at oat-fiber, resistant wheat starch, and inulin, all of which are claimed to be indigestible and have minimal impact on blood sugar (see ingredient backgrounds, above). Their actual impact on blood glucose, however, varied widely, ranging from near zero for oat fiber, ~10% of glucose for inulin, to 76% of glucose for resistant wheat starch. 

This is extremely disconcerting, as both oat fiber (iAUC 0.4% of glucose) and resistant wheat starch (iAUC 75% of glucose) are listed as insoluble fiber on nutrition labels, but have radically different impact on blood sugar. Given the lack of clarity and quantification of ingredient lists, this makes it nearly impossible to predict the blood glucose impact of a food without eating it and testing.


Non-nutritive Sweeteners

Additional details here: Allulose

The non-nutritive sweeteners I tried were a lot more promising. Both allulose and erythritol, my two favorite sweeteners, had negligible effect on my blood glucose up to the maximum quantity.  


Glucose + Fiber

Many people claim that fiber can slow the absorption of sugar, helping to control blood sugar levels. Soluble fiber is generally claimed to have a stronger effect, but most soluble fibers are digestible and would contribute to blood sugar rise. Given that, I decided to test if oat fiber, and insoluble, indigestible fiber would slow blood sugar increase. 

Towards that end, I tested glucose with an additional 44g of oat fiber. The impact on blood glucose was the same within the error of the measurement, but the time to peak was increased by 30 min. Further testing with different types of fiber and other macronutrients would be required to get a better handle on this effect, but the initial results suggest that while fiber might have an impact on rate of glucose absorption, it’s not signifiant enough to change the blood glucose impact for insulin-dependent diabetics (might be very different for someone who makes more endogenous insulin).


Final Thoughts & Next Experiments

Key results in the Summary section above.

Overall, the experiment was successful, yielding a reliable measure of the impact of the major macronutrients and my most commonly used low-carb ingredients. I also got preliminary insight into the interaction effect between glucose and insoluble fiber. 

Due to external circumstances, I didn’t get to as many ingredients as I’d have liked. I may come back and do further experiments. I’m particularly interested in testing a wider range of purportedly low-carb ingredients and diving deeper into interaction effects (maybe looking foods with a range of different carbohydrate:protein:fat:fiber).

That said, these experiments were very time consuming and the frequent extended fasts were disruptive to my normal routine. I need to either find a simpler/easier experimental protocol or get more people to join in to accelerate data collection.

In the meantime, my plan for next experiments is:

  • Re-tune basal and bolus (meal) insulin doses
    • My routine has changed a lot due to working from home, changing doctors, and changing medication (due to insurance requirements). Plus, I was able to get a Dexcom G6 CGM, which is showing accuracy comparable to my blood glucose meter. Blood sugars are still good, but I think I can get them better.
  • Re-measure blood sugar impact of glucose and insulin; compare to previous data
    • While working from home, I’ve gained some weight (and hopefully muscle). This has resulted in a change in my insulin sensitivity. Not huge, but I need to remeasure to have an accurate baseline for future experiments.
  • Test the effect of some dietary supplements that have been reported to affect blood sugar in the literature, but where data insufficient or contradictory
    • Vitamin C (reported to cause blood glucose meters to read higher than actual, but all measurements I can find are for injected vitamin C)
    • Glutamate (reported to reduce post-prandial glucose, but magnitude and timing vary widely)
    • Others tbd. 

As always, if you have any questions, comments, suggestions, or are interested in joining in future experiments, please let me know in the comments or send a PM via the contact form or to quantifieddiabetes_at_gmail.com.


– QD


Get new posts by email or rss feed

Blood Glucose Stats & Insulin Tuning Plan

Get new posts by email or rss feed


As I mentioned in the previous post, my next set of experiments will be re-tuning my basal (background) and bolus (meal) insulin doses. Before I started that, I’d like to take a look at how my blood sugar has been over the last few months and lay out the plan for how I will adjust my insulin dosages.

Now that I’m using a Dexcom CGM, it’s much easier to monitor my blood sugar. From my own tests, after calibration my Dexcom matches my BGM (Freestyle Lite) within ~5 mg/dL, which is within the error of the meter, so I will just use the data from the Dexcom. 

Dexcom provides a service, Clarity, that autogenerates reports based on your data. There’s a ton of options, but for my purposes, I’ll be looking at average blood glucose, coefficient of variation, and time in range

Here’s the data broken out by month:

Figure 1. Average blood glucose (blue) & coefficient of variation (orange) by month.
Figure 2. Time-in-range vs. month.
Figure 3. Time-in-range vs. month, excluding “in-range.”

Overall, my blood sugar is pretty good, but my time low is higher than I’d like. My suspicion is that this is due to my basal insulin being too high, resulting in me often going low between meals. Hopefully re-tuning my insulin doses will fix that. 

To tune my insulin, I’m going to follow the approach described by Dr. Richard Bernstein in his book, Diabetes Solution, modified to use the vastly increased data from my CGM. I’ve used this in the past and it worked well for me. The basic procedure will be as follows:

  • Target an average blood sugar of 85 mg/dL.
  • Use my current insulin doses as baseline (Bernstein provides guidelines for how to estimate initial doses from scratch, but there’s no need for me to do that).
  • Adjust wait times between insulin injection and meals so that BG decreases by 5 mg/dL (to match timing of BG effect of insulin and food)
  • Adjust bolus insulin amount & type to minimize BG increase from the meal without causing an overall decrease in BG. 
  • Adjust basal insulin amount to minimize BG change overnight and between meals 

When I did this before, I was using a finger-stick meter and needed worth of data to make fine adjustments. I’m hoping that with the increased data quantity from the CGM, the process will go much faster. Finger’s crossed.


-QD 


Get new posts by email or rss feed

I’m back.

It’s been a long time. For the past five months, I was working on a COVID-related project that took up all of my spare time. The project just ended so I’m going to get back to the QD project.

To everyone who reached out over last few months, thank you. I really appreciated your kind words, questions, and encouragement. It was a big part of my motivation to start this back up. 

Here’s the plan for the next few experiments/posts:

  • Complete analysis and write up final report for the food effect study
    • In addition to what I’ve already posted, I have data for corn starch, erythritol, inulin powder, and glucose+oat fiber.
  • Re-tune basal and bolus (meal) insulin doses
    • My routine has changed a lot due to working from home, changing doctors, and changing medication (due to insurance requirements). Plus, I was able to get a Dexcom G6 CGM, which is showing accuracy comparable to my blood glucose meter. Blood sugars are still good, but I think I can get them better.
  • Re-measure blood sugar impact of glucose and insulin; compare to previous data
    • While working from home, I’ve gained some weight (and hopefully muscle). This has resulted in a change in my insulin sensitivity. Not huge, but I need to remeasure to have an accurate baseline for future experiments.


– QD

Effect of Food Ingredients on Blood Glucose: Resistant Wheat Starch

Get new posts by email or rss feed


This self-experiment is being done as part of the Keating Memorial Self-Research Project. A couple of other people from the Open Humans community are also running the same experiments. If you’re interested in joining in, let me know in the comments or send me a PM. 

This post is an update on my experiments measuring the effect of food ingredients on blood sugar.

Plan:

  • Design experiments and solicit feedback: blogRedditOpenHumans
  • Calibrate continuous blood glucose meter: started 2/18, report tbd.
  • Establish fasting baseline & determine time of day for experiments: Complete
  • Food effect measurements
    • Glucose: Complete
    • Allulose: Complete
    • Oat fiber, raw & cooked: Complete
    • Whey protein & olive oil: Complete
    • Resistant wheat starch: Complete (this post)
    • Corn starch: Started 4/6 
    • Soluble corn fiber
    • Inulin
    • Protein, fat, sugar, fiber, starch mixtures.

This week, I have the results from resistant wheat starch.


Summary

Resistant wheat starch, despite claims that it is not digested and doesn’t raise blood glucose, increases my blood sugar by 76% that of glucose (by iAUC), but with a slower rise, lower peak (33% that of glucose), and much longer tail.

This is especially problematic for predicting the blood glucose impact of foods from their nutrition information as based on my data so far, even insoluble fibers can range in impact from 0.4 – 76% of glucose.

Next week I’ll finish out the major macronutrient groups with cornstarch. Still deciding where to go after that, but it will either be more ingredients used in low carb cooking (inulin, erythritol, soluble corn fiber, lupin flour) or mixtures of the major macronutrients (to measure combinations effects.


Details

Purpose

To quantify the effect of ingestion of food ingredients and ingredient combinations on my blood sugar.


Ingredient Background

Resistant starch is starch that, purportedly, is not digested in the small intestine and therefore doesn’t increase blood sugar when consumed. There are four different classes of resistant starches, RS1-4, which differ based on how they’re formed and the method by which they resist digestion. Resistant wheat starch is RS4, meaning it was chemically modified to resist digestion in the small intestine.


Design/Methods

Procedure. From 7 pm the day before through 4:30p the day of experiment, no food or calorie-containing drinks were consumed and no exercise was performed. Non-calorie-containing drinks were consumed as desired (water, caffeine-free tea, and decaffeinated coffee). At ~12 pm, the substance to be tested was dissolved or suspended in 475 mL of water and ingested as rapidly as comfortable. BGM measurements were then taken approximately every 15 min. for 2 h or until blood glucose had returned to baseline, whichever was longer. A final BGM measurement was taken 4.5 h after ingestion.

Measurements. Blood glucose was measured using a FreeStyle Libre flash glucose monitor and a FreeStyle Freedom Lite glucose meter with FreeStyle lancets & test strips. No special precautions were taken to clean the lancing site before measurement. To take a sample, the lancing devices was used to pierce the skin at an ~45 deg. angle from the finger. Blood was then squeezed out by running the thumb and pointer finger of the opposite hand from the first knuckle to the lancing site of the finger. Blood was then wicked into a test strip that had been inserted into the meter and the glucose reading was recorded.

Data Processing & Visualization. iAUC was calculated using the trapezoid method (see data spreadsheet for details). Data was visualized using Tableau.

Medication. I took my normal morning and evening medication, but did not dose for the experimental food ingested.


Data

Link


Results & Discussion

Figure 1.  Change in blood glucose vs. time for resistant starch and glucose tests.
Figure 2. Maximum blood glucose increase and iAUC vs. amount consumed. Red, orange, and blue indicate glucose, resistant wheat starch, and whey protein isolate, respectively. Lines are the best linear fit to the data.

Changes in blood glucose as a function of time for the resistant wheat starch and glucose tests are shown in Figure 1. For resistant wheat starch, I observe an increase in blood glucose starting at ~45 min. and reaching a peak between 75-120 min. While the timing is similar to that of whey protein, the magnitude of impact is much larger, with the peak change in blood glucose and iAUC increasing by 33% and 76% vs. glucose. It will be interesting to see next week how regular corn starch compares to resistant wheat starch and therefore if the chemical modifications to resist digestion are having any meaningful impact.


Conclusion & Next Experiments

Resistant wheat starch, despite claims that it is not digested and doesn’t raise blood glucose, increases my blood sugar by 76% that of glucose (by iAUC), but with a slower rise, lower peak (33% that of glucose), and much longer tail.

Put together, this indicates that resistant wheat starch is slower to digest than glucose, but contrary to the claims above, is clearly still metabolized to glucose. This is extremely disconcerting, as both oat fiber (iAUC 0.4% of glucose) and resistant wheat starch (iAUC 75% of glucose) are listed as insoluble fiber on nutrition labels, but have radically different impact on blood sugar. Given the lack of clarity and quantification of ingredient lists, this makes it nearly impossible to predict the blood glucose impact of a food without eating it and testing.

Next week I’ll finish out the major macronutrient groups with cornstarch. Still deciding where to go after that, but it will either be more ingredients used in low carb cooking (inulin, erythritol, soluble corn fiber, lupin flour) or mixtures of the major macronutrients (to measure combinations effects.


– QD


Get new posts by email or rss feed